
Abstract- Growing new robotic applications in agriculture, 
food-processing, assisted surgery and haptics, which requires 
handling of highly deformable objects, present a number of design 
challenges; among these are methods to analyze deformable 
contacts. Recently, meshless methods (MLM), which inherit many 
advantages of finite element method (FEM) and yet need no explicit 
mesh structure to discretize geometry, have been proposed as an 
attractive alternative to FEM for solving engineering problems 
where automatic re-meshing is needed. This paper offers an adaptive 
MLM (automatically inserting nodes into large error regions) for 
solving contact problems.  We employ the sliding line algorithm 
with the penalty method to handle contact constraints; it does not 
rely on small displacement assumptions and thus, it can solve 
non-linear contact problems with large deformation. Along with 
three practical applications, we validate the method against results 
computed using commercial FEM software and analytical solutions.  

I. INTRODUCTION  
Numerical methods have been increasingly used in 

non-traditional robotic applications involving mechanical 
deformable contact; for example, compliant grasping [1, 2], 
robotic assembly of snap-fits [3] and assisted surgery [4].  
Mechanical contacts are common robotic problems in 
agriculture, food-processing and surgical robotic systems. 
Solutions of contact with large deflection and/or involving 
deformable objects are essential to help optimize designs and 
improve performance of these systems. With few exceptions, 
solutions to these highly nonlinear problems are solved 
numerically. Among the methods, FEM has been most 
popular because it is a general method and can handle 
complicated geometry.  

After decades of development, commercial FEM software 
has been widely available to solve many engineering contact 
problems [5, 6]. Unlike lumped-parameter methods, methods 
using distributed models such as FEM need a longer 
computational time but can provide more detailed and 
accurate solutions. Recently, FEM has been applied to 
analyze robotic systems involving deformable bodies. Duriez 
etc. [7] developed a contact model based on a linear FEM for 
haptic simulation. Alterovitz et al. [8] used FEM to study the 
effect of friction on surgical needle insertion.  Ciocarlie et al. 
[9] applied FEM to study the grasp quality of deformable 
fingers.  Rapid improvement in computer speeds has made 
FEM more acceptable even for some real-time applications.  
Picinbono et al. [10] developed a linear FEM model for real 
time force feedback of a haptic device, and extended their 

method to nonlinear soft tissue models in [11]. Cotin et al. 
[12] presented a pre-processing technique to allow real-time 
computation of deformations/forces for surgery simulation.  

Although FEM meshes provide the generality to handle 
complicated geometries, appropriate mesh structures are 
often difficult to be created or modified especially for 
applications where meshes must be reconstructed 
automatically during the computational process. For example, 
in [4] considerable research effort must be devoted to 
developing an adaptive mesh generation algorithm in order to 
simulate the process of needle insertion. The accuracy of 
FEM depends significantly on the quality of its mesh.  
Additionally, the mesh density must be maintained at a 
sufficiently high level around the contact region to obtain 
reasonably accurate results. However, additional elements in 
non-contact regions do not generally help improve the overall 
accuracy.  Thus, the mesh density should not be uniformly 
high as they would simply demand more computational time; 
clearly, an appropriately designed mesh is very important for 
FEM analysis to obtain accurate results efficiently.  This is 
especially true for solving a contact problem where a large 
number of iterations are often needed for the solution to the 
highly nonlinear problem to converge.  Existing mesh 
generation programs for FEM, in general, have difficulties to 
meet the demands of both accuracy and computational 
efficiency simultaneously due to the stringent shape 
requirements of FEM elements; additional manual 
modifications of the meshes are often necessary. For contact 
problems involving large deformation, it is very difficult to 
construct a good mesh even with the help from an 
experienced FEM analyst because contact regions in such 
problems can not be located accurately before computing. 
Thus, it is desired to have a method that automatically 
identifies regions of large errors, and systematically increase 
their nodal density to improve the overall accuracy with no 
human involvement.   

ML methods (built on the theoretical framework of FEM) 
have been gaining attention [13-15]. The construction of a 
basis function for MLM, however, does not rely on the mesh 
structure. This significantly reduces the difficulties of 
developing an algorithm to adaptively increase node densities, 
and makes MLM a very attractive alternative to FEM for 
solving problems where automatic re-meshing is needed.  
Recently, an adaptive MLM [16] with automatic error 
estimation and node insertion has been developed for solving 
linear electromagnetic problems effectively reducing time 
needed to design initial meshes or re-mesh in computation This 
paper extends the adaptive MLM for solving non-linear 
problems and offers the followings: 
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1. We present a formulation for solving deformable contact 
problems using MLM. This formulation, which applies the 
sliding line algorithm [17] along with the penalty method 
[6] for handling the contact constraints, does not assume 
small (or linear) displacements.  Unlike in [16] where 
magnetic problems are formulated in terms of 
displacements, we derive the error estimation, which  
identifies regions of  large computational errors for 
automatic node insertion, based on mechanical stresses 
since  displacement of a rigid body motion does not 
necessarily result in mechanical stresses.  

2. Three examples are given to illustrate the automatic  
inserting procedure of the adaptive MLM and its 
applications in deformable contact. Unlike FEM where 
excessively large deformation could cause severe element 
distortion and consequently breakdown the simulation, the 
adaptive MLM algorithm is able to construct basis 
functions without using mesh structure. 

3. The adaptive MLM algorithm for solving contact problems 
has been validated by comparing computed results against 
analytical solutions whenever possible, and those 
simulated using ANSYS (a commercial FEM package).   

I. FORMULATION OF DEFORMABLE CONTACT 
Mechanical contact involving large deformation is 

formulated using MLM in weak form.  Contact is modeled as 
a constraint imposed onto the weak form formulation.  

A. Formulation of Mechanical Contact  
Consider two bodies, ΩA and ΩB, bound by boundaries, ΓA 

and ΓB, respectively as shown in Fig. 1a, where X is the 
original un-deformed coordinate of a particle; and xA(X, t) 
and xB(X, t) represent the deformed coordinates of an 
arbitrary particle on ΩA and ΩB at time t respectively.  

 
 

a) Contact between two bodies b) Discretized representation 
Fig. 1 contact constraint 

Contact is posed as a displacement constraint on 
discretized nodes. In the discretized domain, the two contact 
bodies are referred as the slave and master. The discrete nodes 
coordinates are defined in Fig. 1b, where xs and xc are the 
slave node and contact point on the master segment 
respectively; xm1 and xm2 are two adjacent master nodes; and 
xc0 is the contact point of the last computational step. In Fig. 
1b, n and t are respectively the unit normal and tangential 
vectors at xc. The vector t is computed from the master nodes: 

( )2 1 /m m= −t x x A   where 2 1m m= −x xA  (1) 
and n can then be obtained from the orthogonality z= ×n e t  
where ez is an unit vector along the z axis. 

The distance from the slave node to the master segment is 

defined as the normal gap function gn as follows: 
1( )n s mg = − •x x n  (2) 

The normal contact force cnτ is proportional to ng :  
0 0  when two points are not in contact
0 0  when two points are at contact      

0  penetration occurs                       

n
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n n n
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k g g
τ

≥
= =
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where the penalty proportionality kn is a very large number. 
This approximation approaches ideal contact as nk → ∞ .  
The tangential component of the contact force (or the friction 
force) ctτ can be obtained by the Coulomb friction law: 

Stick occurs if 0
Slip occurs if

ct cn

ct cn

τ µτ
τ µτ

 < ≤ −
 = −

 (4) 

where µ is the friction coefficient. To determine the current 
state of contact (“stick” or “slip”), another gap function gt (or 
the distance from xco to xc) is defined to depict the distance 
that the contact point slips for two adjacent time steps:  

0( )t c cg = − •x x t  (5) 

With gt, ctτ can be approximately obtained as follows: 

 
(stick)
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τ
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where kt is the tangential penalty parameter. As tk → ∞ , (6) 
approaches the ideal Coulomb law.   

B. Formulation of Large Deformation Mechanics 
For quasi-static problems involving large deformation, the 

three governing equations given by [18] are 
3

0 0
1

0 ( 1,2,3)ji
i

jj

P
b i

X
ρ

=

∂
+ = =

∂∑  (7) 

where ρ0 and b0 are the density and body force of the original 
un-deformed state; and Pji is the element of the 1st Piola- 
Kirchhorff (PK) stress tensor P. To solve (7) for the 
displacement function u=x-X as an independent variable, the 
asymmetric stress tensor P is transformed to the symmetric 
2nd PK stress tensor S by 

3

1

r
ji ir

r j

xP S
X=

∂=
∂∑ where ( )

3 3

1 1
ir irkl kl kl

k l

S C ε ε
= =

= +∑∑  (8a, b) 

irklC  is an element of the material compliant tensor C (a 
material property); and and kl klε ε  are the terms in the Green 
strain tensor given by 

1
2

k l
kl
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u u
X X

ε
 ∂ ∂= + ∂ ∂ 

and 
3

1

m m
kl

k lm

u u
X X

ε
=

∂ ∂=
∂ ∂∑  (9a, b) 

For linear small displacement problems, the higher order 
terms in the Green strain tensor can be ignored or 0klε ≈ ; the 
Green strain tensor reduces to Cauchy strain klε . 

The two types of BC’s for a continuum body (Dirichlet and 
Neumann) are the displacement iu and traction it  (or 
force/area) BC’s: 

( 1,2,3)i i i= =u u  on uΓ  (10) 
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where n is the normal vector of boundary. 

C. Weak form Formulation of Contact Mechanics 
 The MLM approximates an unknown displacement 

function u(X) using (12): 

1

( ) ( )
n

i i
i =

= − = Ψ∑u X x X X u  (12) 

where ui is the nodal control value associated with the ith 
node; and Ψ(X) is a ML basis function; see for example, 
reproducing kernel (RPK) method [19]. If the ML basis 
function at the ith node is an interpolating function, ui is the 
displacement at this node ui=u(Xi). Otherwise, ui≠u(Xi). 

The governing equation in weak form can be formulated 
using the variational method along with energy conservation. 
The variations of the virtual internal and external works 
without contact are given respectively by 

 
0

0
I

i ji I
j

W P d
X

δ δ
Ω

∂Ψ
= Ω

∂∫ x  (13) 

and 
0 0

0 0 0e I i I I i IW b d t dδ ρ δ δ
Ω Γ

= Ψ Ω + Ψ Γ∫ ∫x x  (14) 

Incorporating (3) and (6) or the assumptions in the penalty 
method, the variation of the virtual work contributed by the 
contact force ( cnτ  and ctτ ) can be written as 

c

P cn n ct tG g g dδ τ δ τ δ
Γ

= + Γ∫  (15) 

From (2) and (5), T, (1 ) ,n wgδ α α δ= − − − •  n n n x ; and   
T( / ) , / (1 ) , /t o n n wg g gδ α α δ= − − − − •  t n t n t xA A A A  

where T
1 2, ,w s m mδ δ δ δ=   x x x x ; ( )1 /s mα = − •x x t A ; and  

A  and oA are the current and previous distances defined in 
(1).  The weak form equations can thus be formed using the 
energy conservation, i e pW W Gδ δ δ= + . As shown in (8a, b) 
and (9a, b), the 1st PK stress tensor P is a nonlinear function of 
displacement u. Thus, for the case of large deformation, the 
discretized weak form equations are a set of nonlinear 
equations which can be solved using Newton method. The 
natural (or Neumann) BC’s are applied when the governing 
equations are converted into weak forms. Once the 
weak-form equations are linearized, the essential (or 
Dirichlet) BC’s are applied before solving the linearized set 
of equations. 

II. ADAPTIVE MLM FOR COMPUTATION MECHANICS 
A simple way to improve the accuracy of the numerical 

approximation is to uniformly increase the nodal density in 
the whole computational domain, which is inefficient if large 
errors only occur in certain regions. A more effective way is 
to estimate the error distribution and insert additional nodes 
accordingly, or more specifically, into the large error regions.  

A. Error Estimation  
The numerical error can be estimated by  

2 2
1 1

n n

i ,d i ,d i , d i , d
i i

e( ) ( ) ( )
= =

= Ψ Φ − Ψ Φ∑ ∑x x x�  (16) 

where e( )x� is estimated error; Ψi,d and Ψi,2d denote the basis 
functions at the ith node with a support size d and 2d 
respectively; Φi,d is the solution solved in the previous 
computation step; and Φi,2d is the fitted result using the basis 
function with a support size of 2d.   The rationale for (16) can 
be explained by comparing two different support sizes of a 
RPK basis function [19] as shown in Fig. 2. In general, the 
larger the support size the smoother is the basis function, and 
more difficult to approximate a function with an abrupt 
change in the solution.  Thus, regions of large errors can be 
characterized by comparing the approximation solutions 
solved using the two different basis functions.  

 
Fig. 2 RKP basis function with two different support sizes   

B. Adaptive Node Insertion  
Once the error is estimated from (16), locations of large 

errors are identified as follows: 
a a pe( ) e∀ >x : x�  (17) 

where xa is the test location; and ep is a specified error 
threshold. Additional nodes can be inserted into the 
computational domain using the Voronoi plot [20] technique 
that constructs one Voronoi cell for each node.  As shown in 
Fig. 3, a Voronoi cell is a polygon containing all the points 
closest to the node that it surrounds.  The error at the vertexes 
of each Voronoi cell is computed from (16) and if the error 
satisfies criterion (17), a new node is created at that point as 
illustrated in Fig. 3. The support size of the inserted node is 
calculated using (18): 

( )i p j ir a max= −x xi  (18) 

where ri is the support radius for ith node; ap is a constant 
coefficient normally taken a value between 1 to 3; xi and xj 
are the coordinates of ith and jth nodes respectively.  The 
Voronoi cell of the jth node is adjacent to the Voronoi cell of 
the ith node.  For the newly inserted node, the choice of the 
support radius of the basis function is a trade-off between two 
considerations: It must be sufficiently large to cover enough 
nodes for constructing the ML basis function but kept small to 
localize the effect of the newly inserted nodes.  

C. Partition Unity Integration 
Most of the basis functions (including the RKP method 

[19]) used in MLM have the partition unity property:  

1

1
n

i
i

( )
=

Ψ =∑ x  (19) 

with which the integration for an arbitrary function f(x) in the 
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computational domain can be computed using as follows: 

1 1

n n

i i
i i

f ( )d f ( ) ( )dx f ( ) ( )dx
= =Ω Ω Ω

= Ψ = Ψ∑ ∑∫ ∫ ∫x x x x x x  (20) 

where Ω is the computational domain. To exclude points 
outside the computational domain, (20) is written such that 
the integration is within the support domain Si of ith basis 
function:   

1 1
i

n n

i i
i i S

f ( ) ( )dx f ( )P( ) ( )dx
= =Ω

Ψ = Ψ∑ ∑∫ ∫x x x x x  (21) 

where 
1
0

when
P( )

when
∈ Ω=  ∉ Ω

x
x

x
  

The global integration for the whole computational domain 
is divided into n sub-integration domains and performed upon 
the support domain of n basis functions. Because the support 
domain of the basis functions, in general, has a regular shape, 
the conventional numerical integration scheme such as 
Gaussian quadrature can be applied easily.   It is worth noting 
that using the partition unity integration, a new integration 
cell is automatically created once a new node is inserted as 
illustrated in Fig. 4 and thus, this numerical integration 
scheme is very suitable for adaptive computation. 

  
Fig. 3 Voronoi plot  Fig. 4 Integration cells 

D. Nodal insertion for computation mechanics 
For solving mechanical problems, the stress or strain is a 

more appropriate variable for error estimation since 
displacement of a rigid body motion does not necessarily 
result in mechanical stresses. The mechanical stress is a 
9-component tensor σij (or Sij in the case of large deformation) 
and can be represented as a 3x3 symmetric matrix. The three 
principal stress components (commonly used as criteria to 
determine material failure) are the eigenvalues of the stress 
matrix. They are coordinate independent, and can be utilized 
to locate the region of high stresses. The overall magnitude of 
the stress Tin can be written as 

( )
23 3 3 3

2 2
in

1 1 1 1

2i ii ij ij ii jj
i i i j

T λ σ κ σ σ σ
= = = =

 
 = = + −
  

∑ ∑ ∑∑  (22) 

where λi is the eigenvalue of stress matrix; and 
1 if 

0 if ij

i j

i j
κ

 ≠=  =
. 

The error estimation for inserting additional nodes in 
solving mechanical problems can be executed as follows: 

1. Determine an appropriate support size for the ML basis function.  
2. Compute the displacement field u(X) with the original basis function. 
3. Fit the displacement using the basis function but a larger support size. 
4. Compute the stress field σ(x) from the linear or nonlinear strain (9a, b) 

using the original and the new displacements. 

5. Compute Tin for the original and the new results using (22). 
6. Estimate the error as the difference between two stress magnitudes. 

III. SIMULATION OF DEFORMABLE CONTACT  
We illustrate three examples. The 1st example validates the 

adaptive MLM and contact algorithm against analytical 
solutions and results obtained from ANSYS. The 2nd 
example investigates the effect of friction for a snap-fit 
mechanism.  The 3rd example shows the potential of MLM in 
medical surgery applications. 

Example 1: Contact between rigid and elastic objects 
 Figure 5 shows a classic two-body contact problem, where 

a small rigid object (which may be a rigid punch or robotic 
finger) is driven normally into an elastic body.  Both objects 
are infinite in the z-axis.  The structure is symmetric about the 
y-axis; thus only half of the geometry on the +x-axis is solved. 
Closed form analytical solution describing the y-displacement 
for the frictionless case can be found in [21]. 

2 2

2

0 when

( ) 2(1 ) ln 1 wheny y

x a

u x P x x x a
E a a

δ ν
π

≤
  = − − + − >     

 (23) 

where uy is the displacement in the y-direction; P is the force 
applied on rigid punch; a is half width of rigid punch; and 
yδ is distance that the rigid object moves into the elastic body. 

 
Fig. 5 Rigid punch contacts with elastic foundation 

Table 1 Geometry parameters of example 2 
L (m) H (m) a (m) δy 
.08 .04 .0025 .0001 

To demonstrate the effectiveness of the adaptive method, 
no special node refinement is made around the contact region. 
The computation starts with a uniform distribution of 11×11 
nodes.  After three successive computations, the total number 
of nodes increases from its initial 121 nodes to 194.  Figures 
6(a) and 6(b) show the Voronoi diagrams of the initial and 2nd 
node distributions.  The final node distribution is shown in 
Fig. 6(c).  The MLM and FEM results are compared against 
the analytical solutions in Fig. 7, where FEM uses a total of 
544 nodes with special refinement around contact area. 

As illustrated in Fig. 6, the adaptive MLM automatically 
inserts additional nodes around the contact region. Fig. 7 
shows that the final MLM result is greatly improved after 
three computations. FEM and MLM agree very well in results 
but both are slightly higher than the analytical solution. The 
discrepancy is somewhat expected because the analytical 
solution assumes the body is infinitely long in the x-direction 

y 
x

δy 

a 
 

Elastic body 

L

H 

P 

Enlarged 
contact 
region 

Rigid 
object 

WeD7.1

1210



 
 

 

while numerical solutions base on a finite dimension. 

a)   Initial Voronoi 
diagram  

•  node  

… vertexes of  a 
Voronoi cell 

  

  
b) 2nd Voronoi diagram c) Final node distribution 

Fig. 6 adaptive nodes insertion 

 
Fig. 7 Comparison between MLM, FEM and analytical result 

Example 2: Contact of a snap-fit  
We demonstrate here the use of MLM for analyze contact 

forces of a snap-fit, and compare the results against those 
computed by ANSYS. A typical snap-fit geometry is shown 
in Fig. 8, where the retention block (assumed un-deformable) 
moves horizontally from right to left and contacts with the 
cantilever-hook. The geometry and material parameters of the 
cantilever-hook along with the options used for ANSYS and 
MLM are given in Table 2. 

 
Fig. 8 Geometry of a snap-fit mechanism 

Figure 9 compares the contact forces computed using 
MLM against those with ANSYS for both frictionless (µ=0) 
and frictional (µ=0.2) contacts. The MLM and FEM agree 
closely with each other up to the location where the edge of 
retention block passes the jaw tip, beyond which ANSYS 
computation breaks down due to the large distortion of 
elements. Unlike FEM, MLM is free from mesh distortion, 
and predicts the contact forces throughout the snap fitting 
process.  
Example 3: Contact simulation of needle insertion  

Subcutaneous insertion of needles is one of the most 

common procedures employed in modern clinical practice. 
Applications of these procedures include the biopsy of 
prostate brachytherapy and neurosurgical probe insertion, 
which are usually without visual feedback from below the 
skin’s surface.  Maximum force and stresses generally occur 
at contact before penetration. The adaptive MLM can provide 
computationally efficient detailed information at the contact 
region between the surgery tool and tissues for medical 
surgery simulation applications. Specifically, we simulate a 
needle contacting an elliptical elastic body. The material 
properties of the deformable body and the initial geometry 
and node distribution are in Fig. 10.  No special refinement 
has been made around the contact region for the initial node 
distribution. The needle moves vertically downward from its 
initial position. The contact is computed from the tip of the 
needle at four locations starting from the location at 9.99mm 
and then increasing at an interval of 0.25mm.  

a) x direction force b) y direction force 
Fig. 9 Contact forces  

Table 2 Simulation parameters of snap-fit mechanism 
Parameters Values 
Young’s modulus  2.62 GPa 
Poisson’s ratio 0.4 
Thickness w (mm) 3.2 
lf (mm) 57 
lh (mm) 76 
Radius r (mm) 50 
xa, ya (mm) 49.9, -41.0 
yc (mm) 2.6 

Numerical 2D model 
Plane stress (thickness; 10mm) 
ANSYS  with 3282 nodes 
Element type: PLANE2, 
CONTACT175, TARGET169 
MLM 
Number of nodes: 169 (initial)  
180~200 (after two adaptive 
computations) 

At the 1st contact position, four adaptive computations are 
performed. The converged results for the initial node 
distribution and contact force are shown in Fig. 11. Figure 
11(a) shows that the computation with a small number of 
initial nodes cannot reflect the detail deformation at the 
contact location. With more nodes around the contact region, 
shape changes can be seen at that location in Fig. 11(b). The 
contact forces of the four computations at the initial position 
are shown in Fig. 11(c). The convergence can be observed 
from the fact that the contact force difference between two 
consecutive computations becomes smaller as the adaptive 
procedure proceeds. Inheriting the nodes added from the 1st 
position, three additional computations are performed at the 
2nd position. No significant improvement was observed 
between these computations, indicating that the node density 
is sufficiently large. The deformed geometry and node 
distributions at the other three positions are plotted in Figs. 
12(a)-12(c). The final contact force results are listed in Table 
3. The contact force increases as the needle moves downward. 
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Fig. 10 initial geometry and node distribution 
(Deformable body: Young’s modulus E= 1E6 Pa; Poisson’s ratio µ=0 .4) 

   
(a) Initial (b) After 3st computation (e) Contact force 

Fig. 11 Result after each adaptive computation at the 1st position 

   
(a) 2nd position (b) 3rd position (c) 4th position 

Fig. 12 Results of MLM simulation  
Table 3: Contact Force 

Location of needle tip(mm) 9.99 9.74 9.49 9.24 
Contact force (N) 24.2 31.1 36.5 42.6 

Figure 13 shows the equivalent stress distribution around 
the contact for the 1st and 4th needle positions. As expected, 
the magnitude of stress increases as the needle moves from 
position 1 to 4 and its maximum occurs at the contact 
location. The stress information, which serves as the criterion 
for material failure in the theory of fracture mechanics, 
provides a means to judge when the penetration happens. 

 
(a) 1st position (b) 4th position 
Fig. 13 Equivalent stress distribution (N/m2) 

IV. CONCLUSIONS 
An adaptive MLM method for solving deformable contact 

problems has been presented. This method utilizing the 
sliding line and penalty methods to handle contact constraints 
has been validated against analytical and numerical solutions. 
The results show that the adaptive MLM effectively identify 
regions of large computational errors and progressively add 
nodes accordingly. As demonstrated with intermediate 
results, the overall error rapidly reduces as the adaptive 
procedure proceeds. Apart from eliminating the need to 
manually re-mesh as often required in FEM, the adaptive 
algorithm drastically reduces the computational time of the 
MLM.      

Three examples have been illustrated demonstrating the 
potentials of the adaptive MLM for robotic applications (such 
as surgical simulation and food processing) where handling of 
highly deformable objects is essential. The adaptive MLM 
(currently programmed in Matlab) will be evaluated against 
commercial FEM packages in terms of computational time. 
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